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In many parts of Europe, close-to-nature silviculture (CNS) has been widely advocated as being the best approach
for managing forests to cope with future climate change. In this review, we identify and evaluate six principles for
enhancing the adaptive capacity of European temperate forests in a changing climate: (1) increase tree species
richness, (2) increase structural diversity, (3) maintain and increase genetic variation within tree species, (4) in-
crease resistance of individual trees to biotic and abiotic stress, (5) replace high-risk stands and (6) keep average
growing stocks low. We use these principles to examine how three CNS systems (single-tree selection, group selec-
tion and shelterwood) serve adaptation strategies. Many attributes of CNS can increase the adaptive capacity of
European temperate forests to a changing climate. CNS promotes structural diversity and tree resistance to stres-
sors, and growing stocks can be kept at low levels. However, some deficiencies exist in relation to the adaptation
principles of increasing tree species richness, maintaining and increasing genetic variation, and replacing high-risk
stands. To address these shortcomings, CNS should make increased use of a range of regeneration methods, in
order to promote light-demanding tree species, non-native species and non-local provenances.

Introduction

Forest managers face the challenge of integrating a long-term per-
spective into their decision-making, because forest production
cycles cover long periods, often exceeding 100 years. While
meeting changing societal demands was always a challenge, site
conditions – especially climate parameters – have generally
been assumed to be more or less constant. This assumption is no
longer valid as the climate is changing, which in turn affects site

factors such as air temperature, water availability (IPCC, 2013),
storm patterns (Blennow and Olofsson, 2008; Donat et al., 2010)
and fire risks (McCoy and Burn, 2005; Moriondo et al., 2006).
Global and regional projections for the direction of change in
these site factors exist, but the speed of change remains uncertain
as does the magnitude and frequency of extreme events (IPCC,
2013).

There is increasing evidence that climate change is already
affecting tree growth and tree mortality (van Mantgem et al.,
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2009; Allen et al., 2010). Higher temperatures shorten develop-
ment cycles of disease and pest organisms (Hlásny and Turcáni,
2009; Jönsson et al., 2011) and have been shown to favour their
latitudinal and altitudinal expansion (Battisti et al., 2005). There
is also mounting evidence of a direct link between climate-induced
greater occurrence of forest diseases and pests and increased tree
mortality (Sturrock et al., 2011).

In forest management, the magnitude of the projected climatic
changes – with best estimates of temperature increases between
1.1 and 4.88C by the end of the twenty-first century in comparison
to the reference period 1986–2005 in three out of four scenarios
(IPCC, 2013) – and the associated uncertainty create the need
for a re-evaluation of silvicultural practices. Historically, these
have been developed to meet societal needs in a specific economic,
societal and environmental context and in particular forest types.
If this context alters – and this is the case if the climate as one prin-
cipal determinant of the forest environment changes–, it cannot
be assumed that these silvicultural practices continue to be appro-
priate. Specific practices are likely to exhibit particular strengths
and weaknesses.

Several recent contributions have addressed the issue of adapt-
ing forest management to climate change and future uncertainty
(Spittlehouse and Stewart, 2003; Broadmeadow et al., 2005; Millar
et al., 2007; Rigling et al., 2008; Innes et al., 2009; Bolte et al., 2009,
2010a;Stokes and Kerr, 2009;Lindner et al., 2010;Seidl et al., 2011;
O’Hara and Ramage, 2013; Rist et al., 2013). The arguments of
these contributions are generally based at a conceptual level, e.g.
in terms of ecological stability (Grimm and Wissel, 1997) or adap-
tive capacity (Lindner et al., 2010). The term adaptive capacity is
here defined as the ability of forest ecosystems either to absorb cli-
matic change without major changes in forest composition and
structure (resistance, Grimm and Wissel, 1997),or to rebuild them-
selves, possibly with a different composition and structure, after
disturbances caused or triggered byclimatic influences (resilience),
or to evolve continuously, and not abruptly, in composition and
structure. Increased adaptive capacity would ensure that forests
continue to deliver a broad range of ecosystem services (O’Hara
and Ramage, 2013).

These contributions have not satisfied the demand for guidance
on how specific silvicultural practices should be changed in
response to a changing climate. Only few papers have attempted
to address climate change adaptation in forestry at a more specific
and local level (Brang et al., 2008; Kohnle et al., 2008; Kohler et al.,
2010; Puettmann, 2011). To satisfy the need for immediate guid-
ance, forest administrations and large forest enterprises in
several European countries have published preliminary operational
guidelines to advise forest managers on how to modify silvicultural
practice in response to climate change, e.g. by promoting particular
tree species and reducing the use of others (e.g. Bayerische Staats-
forsten, 2008; Kantonsforstamt St. Gallen, 2008; Forestry Commis-
sion Wales, 2010).

This review paperaims to provide a more scientific basis for such
guidelines. Specifically, we will (1) examine the principles proposed
for climate-adapted forest management, (2) demonstrate the
implementation of these principles in silvicultural practices and
(3) examine to what degree these principles and practices are
already applied in a specific type of silviculture, i.e. close-to-nature
silviculture (CNS).

The procedure used to examine how well a silvicultural system
meets the crucial requirements of adaptation to climate change

can be applied to any silvicultural system and to forests in any
region of the world. Here we decided to apply it to CNS since an in-
fluential bodyof forest managers in Europe viewCNS as particularly
suitable for managing forests in a changing climate (Reif et al.,
2010). This approach is increasingly widely applied in Central
Europe, where there is a very long tradition of its use, and partly
also in Southern Europe, where CNS approaches have also been
applied locally. This geographical range of application is the
reason why our review focuses on forests of the temperate zone
of Europe, including mountain forests of Southern Europe.

Our decision to examine how well CNS adopts principles of
climate change adaptation should not be taken as an uncritical
endorsement of CNS. It is also not our aim to investigate how far
CNS emulates natural processes, but instead to examine CNS as
practised on the ground and described in the literature.

Principles and practices for climate change
adaptation in forest management
This section focuses on silvicultural adaptation strategies, their
rationale and their implementation. To differentiate between the
strategic and the operational level of adaptation in forest manage-
ment, strategic elements are called ‘principles’, and silvicultural
interventions which can be used to operationally implement the
principles are termed ‘practices’. For instance, the creation of
canopy openings of a range of sizes to support regeneration of dif-
ferent species is a practice for implementing the principle ‘increase
tree species richness’.

The principles and practices considered (Table 1) were compiled
from the literature cited in this paper, in particular Spittlehouse and
Stewart (2003); Broadmeadow et al. (2005); Millar et al. (2007);
Brang et al. (2008); Rigling et al. (2008); Innes et al. (2009); Stokes
and Kerr (2009); Bolte et al. (2010a); Lindner et al. (2010) and
Seidl et al. (2011). Our list does not include the general principle
of site-adapted silviculture, since this is a basic tenet of European
forest management including CNS (Wiebecke, 1990), and covers
site-specific tree species selection and variations in management
intensity, target stand structures and production cycles. It also
implies that site-specific management constraints are respected
to maintain the production potential of a site by, e.g. limiting the
impact of heavy harvesting machinery on soils and the remaining
stand to acceptable levels (Edeso et al., 1999).

The following section describes how each adaptation principle
enhances the adaptive capacity of forests in response to a chan-
ging climate, and outlines those silvicultural practices which can
be used to implement a given principle.

Increase tree species richness

This principle calls for maintaining or increasing tree species rich-
ness at the stand scale. Tree species richness is integrally linked
with adaptive capacity because mixed stands are slightly more
resistant to disturbance events such as drought or storms (von
Lüpke and Spellmann, 1999; Schütz et al., 2006; Knoke et al.,
2008; Lebourgeois et al., 2013), and more resilient once a disturb-
ance has occurred (Brang, 2001; Jactel et al., 2009). In mixed
stands, tree species may occupy different niches. While there is
strong evidence for complementary use of light (Pretzsch and
Schütze, 2005), results are contradictory for complementary use
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of the rooting zone (Meinen et al., 2009; Krämer and Hölscher,
2010; Pretzsch et al., 2013). As the interactions between species
that may lead to complementarity are highly dynamic in space
and time and also depend on stand density (Forrester, 2014), it is
not surprising that contradictory results may occur even for the
same species mixture. However, species often have different toler-
ance to climatic factors so that mixtures provide a hedge against
uncertain future conditions. The ecological insurance concept pos-
tulates that more diverse communities are more likely to cope with
new conditions when subject to unpredictable stress or disturb-
ance (Yachi and Loreau, 1999). With an increasing number of func-
tionally different species, the probability increases that some of
these species can resist external disturbances or changing environ-
mental conditions. In addition, the probability increases that one
species can take over the role of another, redundant species that
does not survive the disturbance or new conditions (Walker et al.,
1999; Yachi and Loreau, 1999). For example, most biotic disturb-
ance agents are highly species-specific. Examples are the bark
beetle Ips typographus, which attacks Norway spruce (Picea
abies), but not broad-leaved species or silver fir (Abies alba)
(Wermelinger, 2004), the bast Matsucoccus feytaudi, which is less
aggressive in mixed than in pure maritime pine (Pinus pinaster)
stands (Jactel et al., 2006), and the ash dieback (Hymenoscyphus
pseudoalbidus), which affects Fraxinus excelsior (Kjær et al., 2012).
An additional point is that mixed stands increase future manage-
ment options and future possibilities for natural regeneration.

However, more species-rich stands may not always be better in
all aspects relevant to adaptation to climate change. An often
overlooked issue is that of water use in mixtures. Several studies
have found higher water use of the tree layer in mixture when com-
pared with monocultures of the same species (Schume et al., 2004;

Anders et al., 2006; Forrester et al., 2010). These findings demon-
strate potential trade-offs between promoting tree species diversity
andother functions whichmay increase in importance infuturesuch
as the provision of water or the susceptibility to drought stress.

One of the most important practices used to increase species
richness is the choice of regeneration cut. The natural establish-
ment of several species can be supported by creating large
variations in light conditions, allowing both light-demanding
and shade-tolerant species to regenerate (e.g. group selection in
combination with strip cuts). In young growth originating from
natural regeneration, enrichment planting is a valuable practice
to introduce additional species. Once young trees are established,
species richness should be maintained by appropriate tending
measures. In subsequent development stages, thinning is import-
ant to maintain rare species or species with low competitiveness, in
particular if they are adapted to a warmer and drier climate (Brang
et al., 2008). Finally, the successful establishment of species-rich
stands depends very much on the control of ungulates (Gill, 1992;
Götmark et al., 2005). In order to achieve the optimal adaptive
effect of species mixtures, large mono-specific patches should be
avoided and the pattern of the mixture designed so that it
is robust (i.e. one species does not quickly outgrow others) and can
be easily and effectively managed. Very intimate mixtures usually
require high tending investments and should therefore be avoided.

Increase structural diversity

The presence of trees of different ages and sizes in a forest creates
structural diversity, which may be distributed either vertically
(e.g. in the single-tree selection system) or horizontally (in patch
cut systems). As biotic and abiotic disturbance agents often

Table 1 Relationship between climate change adaptation principles and silvicultural practices

Practices Principles

1. Increase tree
species
richness

2. Increase
structural
diversity

3. Maintain and
increase genetic
variation within tree
species

4. Increase resistance of
individual trees to biotic
and abiotic stress

5. Replace
high-risk
stands

6. Keep
growing
stocks low

Single-tree selection
cutting (incl.
transformation cuts)

X X

Regeneration cuts X X X X
Long regeneration periods X X
Maintenance of seed trees X X X
Natural regeneration X X X
Artificial regeneration X (X)
Introducing provenances

of the same species
X (X)

Tending X
Thinning (X) X X X
Reducing impact of felling

operations
(X)

Reduced rotation length X X X
Control of ungulates X X (X)

X means a practice can be used to fully implement a principle, (X) means a practice may partially contribute to implementing a principle.

Forestry

494

D
ow

nloaded from
 https://academ

ic.oup.com
/forestry/article/87/4/492/2756063 by guest on 13 M

arch 2024



specifically affect trees of a specific size range, it seems a safe
assumption – by analogy with the above-mentioned insurance
hypothesis – that structurally diverse forests will exhibit a higher
overall resistance. For instance, many studies report increased
susceptibility to wind damage with tree height (e.g. König, 1995;
Mayer et al., 2005; Mitchell, 2013). But small trees are not only
blown over less often by storms than large ones, but may also be
less attractive to bark beetles. In contrast, large trees may be
less susceptible to frost, drought and fire than small trees. The re-
silience of vertically structured stands after wind and insect dis-
turbance is large because the advance regeneration present will
be quickly released (Frehner et al., 2005). Increasing structural di-
versity makes it unlikely that disturbances affect all trees in a
forest (Bolte et al., 2010b;O’Hara and Ramage, 2013). It leaves leg-
acies and thus makes forests more resilient (Franklin et al., 2000;
Gustafsson et al., 2010; O’Hara and Ramage, 2013). Higher resist-
ance and resilience mean higher adaptive capacity. An exception
may be forests in areas with high fire risk, where vertical continuity
of fuel between canopy layers provides a ‘ladder’ which makes it
easier for fires to reach the upper canopy. Therefore, this structure
may be associated with fires of higher intensity and faster horizon-
tal propagation (Gonzalez et al., 2006), causing much more
destruction.

Structural diversity can be mainly achieved using uneven-aged
silvicultural systems (single-tree selection), systems with long
regeneration periods (e.g. group selection systems) and transform-
ation cuts (Schütz, 2001) leading to irregular stand structures and
uneven-aged stands. To a lesser extent, crown thinning can also in-
crease structural diversity if used to create two-layered stands. Re-
generation cuts can be combined with underplanting or direct
seeding of a desired admixed tree species that will increase tree
species richness. Mixing tree species of different shade-tolerance
which grow to different sizes clearly supports the aim of maintain-
ing or creating structurally diverse stands. In addition to increasing
the variation in tree size classes at the stand level, structural diver-
sity, which encompasses more than variation in tree dimensions
(McElhinny et al., 2005), may be increased through a variety of
other measures such as specific retention of structural elements
aimed to maintain ecosystem functioning (Gustafsson et al.,
2012).

Maintain and increase genetic variation within tree species

The adaptive capacity of forest tree populations to climate change
also depends on genetic variation. One expression of genetic vari-
ation is local adaptation, which has been shown in numerous prov-
enance trials and common garden experiments, although the
underlying mechanisms are only partly understood (Aitken et al.,
2008).

Therefore a first approach to ensuring adaptive capacity is to
maintain existing genetic variation in tree populations. Natural
regeneration and long regeneration periods (for shade-tolerant
species only) are well suited to regenerate stands with a high seed-
ling density from many parent trees (Finkeldey and Ziehe, 2004), to
ensure high genetic variation. However, natural regeneration also
conserves the genetic material that may originate from poorly
adapted planted trees or from populations with low genetic vari-
ation. Tending and thinning operations usually favour individual
trees with traits which are relevant for timber production, e.g.
stem straightness. However, the process of selecting these

desirable individuals may reduce variation important for adaptive
capacity in thewider population (Finkeldeyand Ziehe, 2004;Paffetti
et al., 2012).

A second approach to increase genetic variability consists of
enriching existing populations with other provenances, especially
for species with a small within-population variation, but high vari-
ation between seed sources. The approach includes multiple popu-
lation breeding (Eriksson et al., 1993; Eriksson, 2001). A third
possibility to maintain or enhance genetic variation is to exert
variable selective pressure on trees by practicing diverse cutting
regimes, which provide different ecological niches with respect
to, e.g. light exposure and soil humidity. Variable selective pressure
can also result from long regeneration periods where inter-annual
climatic variation produces fluctuating environmental conditions.

The main silvicultural practices to achieve high genetic variation
are long-term natural regeneration processes (applicable to
shade-tolerant species) and enrichment planting, in particular if
provenances from warmer and drier climates are used (Aitken
et al., 2008; Finkeldey, 2010). Enrichment planting will depend
upon an adequate supply of seed and seedlings of suitable prove-
nances being available from seed stands, seed orchards and
nurseries.

Increase resistance of individual trees to biotic
and abiotic stress

Individual trees can exhibit different stress resistance. For instance,
many studies have found a higher resistance to snow break in stur-
dier trees, i.e. those with a small coefficient of slenderness (height
(m) dbh21 (cm), Rottmann, 1985)and long crowns. Norway spruce
trees with higher vitality (e.g. expressed by higher live crown ratios)
recovered more easily from heavy SO2 pollution (Slodičák, 1988).
Moreover, vigorous trees, e.g. dominant or co-dominant crown
classes, are more resistant to biotic pests, especially at low and
medium infestation densities (Wenk and Apel, 2007). However,
early reduction of tree density to improve individual tree vigour
(Cameron, 2002) may reduce genetic diversity (Finkeldey and
Ziehe, 2004).

Heavy thinning, which provides individual trees with more
growing space and thus with more soil volume for their root
system, may also improve the resistance and resilience of trees
to drought stress (Kohler et al., 2010). It appears that providing
trees with more growing space promoted recovery after drought
more than actual resistance to drought (Sohn et al., 2012, 2013).
However, whether increased growing space is also advantageous
under extreme drought conditions has so far not been sufficiently
investigated.

The main silvicultural practice to develop long-crowned trees is
the consistent use of thinning from above, and in particular heavy
interventions at the pole stage. In hardwood trees, this is common-
ly commenced as soon as self-pruning has eliminated branches on
the lower6–10 m of the bole. Such thinning regimes usually lead to
large trees with high live crown ratios (Spiecker et al., 2009).

Replace high-risk stands

Stands can be at high risk of being damaged by disturbances such
as storms, forest fires or insects. Examples are stands consisting of
species and/or provenances which are poorly adapted to the site
already under current climate, stands with short-crowned and
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slender trees, with low individual and collective resistance to wind
and snow break, stands already destabilized by felling or previous
disturbance, which have abruptly exposed stems to sun scorch,
or stands with high fuel loads. Such stands are at high risk from
further natural disturbance, which may not only reduce income
from timber sales, but also endanger ecosystem services such as
the protective function against gravitational hazards on steep
slopes. Salvage harvesting after disturbance usually incurs eco-
nomic losses because the timber may be damaged, the harvesting
operations may be more expensive than in planned fellings, or the
timber prices may be low due to over-supply. Climate change can
increase these risks since tree vigour may be reduced (e.g. due to
drought, Bréda et al., 2006), and disturbances may be more fre-
quent (e.g. by bark beetles). Such risks, and associated economic
losses, can be reduced if high-risk stands are replaced prematurely
with less vulnerable stands (Staupendahl and Möhring 2011)using
appropriate silvicultural systems such as modified clear-cutting or
group and strip-felling, or transformation to uneven-aged stands
(von Lüpke et al., 2004).

Keep average growing stocks low

One rationale for maintaining relatively low growing stocks in
forests lies in smaller economic risks because the amount of finan-
cial loss caused by any disturbance depends on growing stock, i.e.
the capital at risk (Usbecket al., 2010).This would be true even if the
pressure (e.g. speed of wind gusts) and the damage of a disturb-
ance event to a stand were independent of its growing stock.
However, high growing stocks are correlated with increased
damage susceptibility. In the case of storms, a greater stand age
and a taller stand height increase stand susceptibility (Spiecker,
2003; Mayer et al., 2005). In the case of forest fires, a high growing
stock connected to high stand densities in Mediterranean forests
can also lead to highercanopy fuel loads (e.g. Mitsopoulos and Dimi-
trakopoulos, 2007), which, together with biomass connectivity at
the landscape scale, can contribute to an increased risk of large
fires (Loepfe et al., 2010;Nocentini and Coll, 2013). Another rationale
for low growing stocks is that, in particular in southern Europe, in-
creasingly limited water resources will not sustain current growing
stocks. Reduced growing stocks can be implemented by earlier
final harvests or heavier thinnings (see principle 4). Target growing
stocks will vary widely between sites and regions, and be higher on
productive sites and when risks are small.

It should be noted that growing stock is directly related to
carbon storage. A lower growing stock implies less carbon
storage in the forest than with higher growing stocks. This implies
that implementing low growing stocks may impose limits to miti-
gation capacity.

Relative importance of the six adaptation principles

It is not possible to rank the relative importance of the six principles
since the ranking depends on the management goals of individual
forest owners, the condition of the particular stands in question,
the site conditions and the disturbance regime. For example, in a
near-natural, mature European beech (Fagus sylvatica) stand,
tree species richness and structural diversity are probably more
relevant than an increase of the individual tree resistance (which
is barely achievable at this late development stage) or a reduction
of the growing stock. In contrast, in a thicket of poorly adapted

Norway spruce, promoting tree species richness, if not too late,
and increasing the individual tree resistance are important issues.

Before we examine how far CNS is compatible with the six prin-
ciples, we will outline how CNS developed in Europe, and establish a
classification of CNS into types since different variants of CNS have
developed in response to social, environmental and economic
factors.

History and classification of CNS types
in Europe
CNS originated in central Europe, where different silvicultural
systems were applied in small farm or community mountain
forests under the designation ‘Plenterwald’ (plenter forest,
Schütz, 1994) or ‘jardinage’. CNS was first described in the nine-
teenth century and has been widely practised since then in some
regions of Europe. Since 1980, CNS has developed from a specialist
application to a mainstream approach in several central European
countries. This approach is also widely known as Continuous Cover
Forestry (Pommerening and Murphy, 2004).

One of the earliest scientific promoters of CNS was Gayer who
worked in southern Germany and observed significant damage
caused by various disturbances in planted even-aged forests domi-
nated by Norway spruce. As an alternative, he advocated mixed
forests with heterogeneous structures in the belief that they
would be less prone to disturbance (Gayer, 1886). In France,
Gurnaud (1886) advocated the traditional selection system (‘jardi-
nage’) as an alternative to shelterwood cuttings in irregular moun-
tain forests, and proposed a simple but highly effective monitoring
and planning method for irregular forests (‘méthode du contrôle’).
This method was later modified (Schaeffer et al., 1930; Leclerc
et al., 1998). In parallel to the ‘jardinage’ system, the ‘method of
natural regeneration with thinnings’ proposed by Hartig (1808)
was promoted by the national forestry school of Nancy in its silvi-
culture course (Lorentz and Parade, 1837), with a method of
natural regeneration ‘with successive cuttings’ notably for beech
and oak (Quercus spp.) forests.

In Slovenia, Hufnagl (1893)promoted selection forest manage-
ment in mountainous regions at the end of the nineteenth century.
This system has been widely applied in Slovenia, Croatia and Bosnia
by generations of foresters. There was a parallel development in
Switzerland where Biolley (1901) promoted the plenter forest and
implemented it in the forests of the canton of Neuchâtel, and
where Engler (1900) advocated natural regeneration and mixed
forests. Later Leibundgut (1948) refined the ‘Femelschlag’ (group
selection or irregular shelterwood system), and introduced the
idea of ‘free choice of cuttings’.

In the 1920s, a special form of CNS developed in northern
Germany, when Möller (1922), inspired by tropical rainforests,
developed the ‘continuous forest’ (‘Dauerwald’ in German, Helli-
well, 1997) approach to increase forest stability and to maintain
forests as intact ‘organisms’. The Dauerwald approach influenced
many private forest owners and was pursued after the Second
World War in the association ‘Arbeitsgemeinschaft Naturnahe
Waldwirtschaft’, which may be translated as ‘working group on
close-to-nature forestry’. Members of this group and other advo-
cates of CNS established Pro Silva Europe in 1989 (Johann, 2006).
In parallel, the Italian silviculturist Pavari (1914, 1948) authored
several papers to present his idea of ‘selvicoltura naturalistica’
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(Ciancio, 2010) based on mixed forests with heterogeneous struc-
tures and natural regeneration. The origin of this approach can be
traced back to the fifteenth century in the eastern Alps, when the
Republic of Venice established rules for selection felling (Volin
and Buongiorno, 1996).

After the Second World War, even-aged high forest silvicultural
systems with fast-growing conifers were dominant in most of
central and northern Europe, and also in some parts of southern
Europe. Timber production was the main focus of forest manage-
ment. At a regional scale, CNS was only retained in Slovenia and
Switzerland and in some districts of Austria, Croatia, France and
Germany. In Slovenia, CNS continued to be practiced throughout
the country in different forms (Mlinšek, 1968; Diaci, 2006). In
Italy, Susmel (1956) defined structural models for uneven-aged
mixed Alpine stands; his intensive work contributed to spreading
the application of ‘selvicoltura naturalistica’ in eastern Alpine
regions.

From the 1980s onwards, there was a revival of interest in CNS.
The main reasons for this were: (1) Increasing environmental
awareness, which found expressions in high-level international
conferences such as the United Nations Conference on Human
Environment in Stockholm in 1972 and the United Nations Con-
ference on Environment and Development in Rio in 1992 (Kerr,
1999). These conferences were followed by subsequent political
processes aiming at sustainable forest management such as the
Helsinki process in Europe. (2) Large-scale disturbances such as
the 1972 storms in northern Germany, and storms of 1990 and
1999 in central Europe, as well as anecdotal evidence that
even-aged plantations had been damaged more than forests
managed using CNS (Mason, 2002). (3) The high economic costs
associated with the establishment phase of even-aged plantations
made a low-input management system with reliance on natural
processes (e.g. natural regeneration) an attractive alternative to
intensive management.

Currently, CNS is a prevailing forest management paradigm
in many European regions. However, the uptake of CNS is not con-
sistent, and its forms vary. For example, Denmark has adopted
CNS as the main management system (Larsen and Nielsen,
2007) whereas in the other Scandinavian countries there is wide-
spread resistance to CNS. In Atlantic Europe (Portugal, south-west
France, the British Isles) and in Spain, implementation of CNS is of
recent origin and arguably was constrained by large plantations,
mainly of non-native species (e.g. Malcolm et al., 2001; Mason,
2003; Barcenilla et al. 2005). Moreover, CNS is not an approach
with a commonly agreed definition (Zingg, 1999; Pommerening
and Murphy, 2004; Duncker et al., 2012). It is rather a compilation
of several principles which are given different weight in different
CNS types. These principles comprise

(1) Promotion of natural and/or site-adapted tree species, often
based on the assumed potential natural vegetation,

(2) promotion of mixed forests,
(3) promotion of diverse vertical and horizontal stand structures,
(4) promotion of natural regeneration,
(5) silvicultural practices that focus on individual trees,
(6) avoidance of clear cuts.

In addition, CNS often adopts principles that are common to sus-
tainable forest management, e.g. reduction of harvesting
damage to remaining stands and the soil, refraining from the use

of pesticides and mineral fertilizers (Ammer et al., 2011),conserva-
tion of valuable habitats and control of ungulate populations to
permit natural regeneration without protective measures (Vosper-
nik and Reimoser, 2008).

As CNS practices are very diverse, a general assessment of
how appropriate CNS is for increasing the adaptive capacity of
European forests in response to a changing climate seems im-
possible. However, the task can be facilitated by classifying
CNS into three contrasting types, based on the size and lifespan
of contiguous cutting areas in the regeneration phase. The three
types are:

(1) Single-tree selection, which also includes ‘continuous forest’
(Dauerwald in German, Heyder, 1986)

(2) Group selection (Matthews, 1994; Puettmann et al., 2009;
Larsen et al., 2010)

(3) Shelterwood (Röhrig et al., 2006)

Our reason for including the shelterwood system in our classifica-
tion is that it embodies some of the principles of CNS, although to
a much lesser extent than the single-tree and group selection
systems. For example, a uniform shelterwood with a regularly
spaced overstorey and low structural diversity can be taken to indi-
cate the outer boundary of what might be considered as a CNS
type. Group and irregular shelterwood systems can be considered
as being intermediate between the uniform shelterwood and the
two selection systems.

Different CNS types can be combined if managers do not imple-
ment a silvicultural system rigidly, but conduct interventions flex-
ibly based on a careful assessment of each stand and adjust the
intervention to its current condition (O’Hara, 1998). This is known
from Slovenia and Switzerland, and leads to one of the above-
mentioned CNS types enriched with elements from others, or
even to a ‘free-style’ CNS (Mlinšek, 1968; Boncina, 2011). For in-
stance, overstorey shelter, which is the main characteristic of the
shelterwood system, is often also used in group selection, thus
leading to irregular shelterwood CNS types.

How far do CNS types comply with the six
adaptation principles?
In Table 2 we have used our expert judgment to rate each of these
three CNS types against the climate adaptation principles and to
determine whether a type meets the principle fully, partially or
not at all.

Evaluation of the single-tree selection system

Interestingly, the single-tree selection system is rated second
highest in terms of the number of climate change adaptation prin-
ciples it meets fully, but is also the highest ranked of the three CNS
types in terms of principles not met (Table 2). Single-tree selection
complies with the principle of increasing structural diversity.
Moreover, most overstorey trees have high live crown ratios of
.50 per cent (Zingg, 2003) and low height : diameter ratios and
are thus relatively resistant to abiotic stress (Mason, 2002). The
continuous natural regeneration, which is an intrinsic part of single-
tree selection (Schütz, 1997),supports the maintenance of genetic
variation within species (Finkeldey and Ziehe, 2004), except for
target diameter harvesting (see below). Single-tree selection in
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conifer dominated forests is often practised at high growing stock
levels (e.g. 400 m3 ha21 in central European forests) although it
can also be implemented at lower levels (e.g. 300 m3 ha21,
Schütz, 1997).

Nevertheless, single-tree selection has a number of limitations.
Most importantly, it only creates very small gaps, favouring a
limited number of shade-tolerant species and posing problems
for the regeneration of light-demanding tree species (Schütz,
1999; Malcolm et al., 2001; von Lüpke, 2004), and thereby reducing
potential species richness. The competitive advantage of shade-
tolerant species in small gaps is even greater if no tending
occurs, so that light competition determines which young trees
survive. Large gaps favourable to light-demanding species are
only created by stand-replacing disturbances, e.g. by infrequent
storms. Enrichment planting is also often not used in single-tree se-
lection, partly since managers traditionally rely on natural regener-
ation, and partly because protecting planted saplings against
browsing ungulates is difficult since young-growth stages are not
concentrated in space. Moreover, non-native species with high
adaptive capacity such as Douglas fir (Pseudotsuga menziesii) are
rarely used, even though they can grow in single-tree selection
systems (Pommerening and Schütz, 2013). This further limits the
possibility of adaptation by increased tree species richness.
Target diameter harvesting, as a variant of the single-tree selection
system, may decrease genetic variation since the trees with fastest
growth, which tend to have a higher heterozygosity, are preferen-
tially harvested. As a result, these trees may have less opportunity
to produce offspring than trees harvested at a later stage (Konnert
and Spiecker, 1996; Finkeldey and Ziehe, 2004).

Also, single-tree selection does not allow a radical replacement
of high-risk stands–, since patch cuts, which cause the loss of the
highly uneven-aged plenter structure, are generally avoided.
However, single-tree selection rarely produces the uniform and
short-crowned trees characteristic of high-risk stands.

This evaluation of the single-tree selection system largely
applies also to the transformation of even-aged to uneven-aged
forests with selective thinning.

Evaluation of the group selection system

The group selection system is rated highest in terms of the number
of climate change adaptation principles that are completely met
and this CNS type is not associated with any principles that are
not met (Table 2). Like single-tree selection, group selection com-
plies with the adaptation principles of increasing high (small-scale)
structural diversity. Thinnings conducted in this system increase
the resistance of individual trees to biotic and abiotic stress. The
small patch cuts that are a feature of this system can be used as
a means of replacing high-risk stands. Finally, group selection
can, in principle, be practised at different growing stock levels by
heavy thinnings and short rotation lengths, although the latter
are sometimes avoided (Reif et al., 2010).

The limitations of group selection systems are similar to those of
single-tree selection systems, especially the difficulty to retain
shade-intolerant species in small gaps (Malcolm et al., 2001;
Mason et al., 2004; von Lüpke, 2004), or if extended regeneration
periods are used. However, using a range of gap sizes and a more
rapid expansion of gaps can create highly variable light environ-
ments in space and time and thus facilitate higher tree species rich-
nessthan in single-treeselection(von Lüpke, 2004).Lesscompetitive
tree species may be outcompeted during young-growth stages if
stands are kept at high density and no pre-commercial tending or
thinning interventions are conducted, similar to the situation in
forest reserves (Heiri et al., 2009). Finally, planting is more often
used in group than in single-tree selection systems, where it is
unusual (Schütz, 1997), which also helps to increase tree species
richness.

Evaluation of the shelterwood system

The shelterwood system is ranked lowest in terms of the number of
climate change adaptation principles that are fully met but is
second to the single-tree selection system in terms of the principles
not met (Table 2). The shelterwood system tends to produce
even-aged mono- or two-layered stands (Spurr, 1956). Phases

Table 2 Ability of three CNS types to implement six principles of climate change adaptation

CNS type Adaptation principles

1. Increase
tree species
richness

2. Increase
structural
diversity

3. Maintain
and increase
genetic
variation
within tree
species

4. Increase
resistance of
individual trees
to biotic and
abiotic stress

5. Replace
high-risk
stands

6. Keep
growing
stocks low

Number of
principles
+

Number of
principles
+

Number of
principles
2

Single-tree
selection
system

2 + + + 2 + 2 2 2

Group
selection
system

+ + + + + + 4 2 0

Shelterwood
system

+ 2 + + + + 1 4 1

+ Means a CNS type is generally adopting the principle+means it may adopt it in some cases or partly, 2 means it is unable to implement the principle.
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with high structural diversity are thus rather short-lived, apart from
the irregular shelterwood system (Raymond et al., 2009).However,
the longer the regeneration period used, which may extend to 30
years, the more structurally diverse the subsequent stand can
become. Tree species richness can be promoted by varying the
degree of overstorey retention and the length of the regeneration
periods (Raymond et al., 2009). As in previous systems, pre-
commercial thinning can be conducted to maintain admixed
species, although such interventions can also be used to reduce
species richness to commercially valuable species. Planting is
rarely used to increase tree species richness, but can be integrated
as enrichment planting after the final cut where natural regener-
ation has partly failed or established regeneration has been
damaged by the harvesting operations. The reliance on natural re-
generation and the relatively long regeneration periods support the
maintenance of genetic variation (Table 2). Selective thinning is
often conducted to increase the individual resistance of trees to
biotic and abiotic stress since high resistance of the seed trees is
needed when shelterwood cuts start (Hanell and Ottosson-
Lofvenius, 1994). The replacement of high-risk stands using the
shelterwood system is possible on wind-firm sites. If advance re-
generation is not yet established or if natural regeneration fails,
this may entail planting. The shelterwood system is compatible
with low growing stocks if production cycles are relatively short
and thinnings are consistently applied. Among the three CNS
types, the structural diversity is smallest in the shelterwood
system, in particular in the uniform shelterwood system (Spurr,
1956).

Overall assessment of the three CNS types

The three CNS types described here – single-tree selection, group
selection and shelterwood – are compatible to some extent with
the six adaptation principles; only the single-tree and shelterwood
systems were not in accord with at least one principle. In eight
cases, a principle is only partly fulfilled in a CNS type, often mean-
ing that the fulfilment depends on the use of specific silvicultural
practices.

In contrast to common views (Reif et al., 2010), no single CNS
type can be viewed as an optimal silvicultural response to a chan-
ging climate (cf. Bauhus et al., 2013).This is not surprising since CNS
was originally not developed for this purpose, but for timber pro-
duction in different forest types. However, traditional CNS types
have already been modified to accommodate new needs. Exam-
ples are requirements to retain habitat trees which have been inte-
grated into CNS in some countries and are now even required under
forest certification schemes (Programme for the Endorsement of
Forest Certification, Forest Stewardship Council; e.g. MLUV, 2004),
although with limited long-term effects (Rosenvald and Löhmus,
2008). In each of the three types, there is also variation in planting,
tending and thinning practices, which means that there is still con-
siderable potential to develop these systems further to meet the
future requirements of adaptation to climate change. In addition,
in forest practice there is often no clear boundary between the
three different systems so that intermediate combinations are
possible (Raymond et al., 2009).

Within the Triad zonation framework of Seymour and Hunter
(1999), CNS is part of the moderate approach with multifunctional
areas under ecosystem management (see also O’Hara and
Ramage, 2013). In the classification of forest management

approaches by Duncker et al. (2012), CNS covers ‘Close-to-nature
forestry’, but is also compatible with most of the basic principles
described for ‘Combined objective forestry’. These differences
occur because Duncker et al. (2012) used a management intensity
gradient to evaluate existing forest management strategies
whereas our classification is based on existing silvicultural terms.

The most flexible CNS system is the group selection system
because it provides variation in patch sizes ranging mostly
between 0.05 and 0.5 ha. This range creates environmental gradi-
ents (in particular light gradients) providing suitable conditions for
both shade-tolerant and shade-intolerant tree species. While
shade-tolerant species will grow well even in gaps smaller than
0.05 ha, shade-intolerant species do not benefit much from gaps
larger than�0.3 ha (Malcolm et al., 2001; Christopher et al., 2005).

Single-tree selection is the most suitable way to increase or
maintain small-scale structural diversity. However, it is less suit-
able for increasing species richness. In contrast, the shelterwood
system, and in particular the uniform shelterwood system, has
the lowest structural diversity in the long term, but is more suitable
for increasing tree species richness in the next forest generation, by
facilitating the introduction of new species or provenances with en-
richment planting.

The three different CNS systems have been applied for periods of
well over 100 years (Schütz, 1994) in European forests. During this
time, these silvicultural systems have been adjusted to particular
conditions and one of the objectives of this paper is to encourage
this to happen in the future. Today, managers practicing CNS
tend sometimes to stick to a fixed set of principles, and to value
their personal experience more than scientific evidence or practical
knowledge gained in other parts of the world (Puettmann et al.,
2008). However, the challenge of climate change means that
past experience of how to manage a forest should not constrain
its future management.

Conclusion: further checks of the match
between adaptation principles and
silvicultural systems are needed
Global climate change poses significant challenges and opportun-
ities to forest management (Read et al., 2009), and implies a need
for adjusting silvicultural practices used by forest managers. It
is unwise to address adaptation without taking account of the
full range of adaptation principles and practices. This also implies
that some general restrictions on forest management, which
apply to all silvicultural systems, should be revised. For instance,
restrictions aimed at conserving genetic diversity of local popula-
tions may prohibit the use of provenances from outside a planting
region, although their robustness against environmental stress
(e.g. drought) has been demonstrated in provenance trials
(Kätzel and Löffler, 2007). This is an obstacle to enrichment
planting.

We show that all six adaptation principles are already used in
CNS, albeit to a different degree in different CNS types. CNS is there-
fore well suited to help forest managers cope with future climate
change, and management principles such as promoting mixed
stands, structural diversity and individual tree resistance should
be maintained. However, no single CNS type is an optimal adapta-
tion strategy in all respects. Particular deficiencies exist in comply-
ing with the principles ‘increase tree species richness’, ‘maintain
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and increase genetic variation’ and ‘replace high-risk stands’. To
address these shortcomings, CNS should employ a larger variation
in regeneration methods which helps to increase species richness
by integrating light-demanding tree species, non-native species
and non-local provenances. This could be achieved by applying dif-
ferent CNS types at the landscape level.

We expect that other silvicultural systems, and also specific
local variants of CNS, exhibit specific advantages and limitations
for climate change adaptation. We therefore advocate testing all
silvicultural systemsagainst the sixadaptation principles described
here to identify their strengths and weaknesses as tools for adapt-
ing forests to the challenges posed by climate change. The results
of such an evaluation can be used to develop region- and site-
specific silvicultural systems that enhance forest resilience
against an uncertain future.
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Bréda, N., Huc, R., Granier, A. and Dreyer, E. 2006 Temperate forest trees and
stands under severe drought: a review of ecophysiological responses,
adaptation processes and long-term consequences. Ann. For. Sci. 63,
625–644.

Broadmeadow, M.S.J., Ray, D. and Samuel, C.J.A. 2005 Climate change and
the future for broadleaved tree species in Britain. Forestry 78, 145–161.

Cameron, A.D. 2002 Importance of early selective thinning in the
development of long-term stand stability and improved log quality: a
review. Forestry 75, 25–35.

Christopher, R., Webster, R. and Lorimer, C.G. 2005 Minimum opening sizes
for canopy recruitment of midtolerant tree species: a retrospective
approach. Ecol. Appl. 15, 1245–1262.

Ciancio, O. 2010 Un retaggio di Aldo Pavari: la selvicoltura naturalistica.
L’Italia Forestale e Montana 65, 459–469.

Diaci, J. (ed.). 2006 Nature-based forestry in Central Europe: alternatives to
industrial forestryand strict preservation. In Studia Forestalia Slovenica 126.
Biotechnical Faculty, Department of Forestry and Renewable Forest
Resources.

Donat, M.G., Leckebusch, G.C., Pinto, J.G. and Ulbrich, U. 2010 European
storminess and associated circulation weather types: future changes
deduced from a multi-model ensemble of GCM simulations. Clim. Res. 42,
27–43.

Duncker, P.S., Barreiro, S.M., Hengeveld, G.M., Lind, T., Mason, W.L., Ambrozy,
S. and Spiecker, H. 2012 Classification of forest management approaches: a
new conceptual framework and its applicability to European forestry. Ecol.
Soc. 17, 51.
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Imprimerie Paul Jacquin, 121 p.

Gustafsson, L., Kouki, J. and Sverdrup-Thygeson, A. 2010 Tree retention as a
conservation measure in clear-cut forests of northern Europe: a review of
ecological consequences. Scand. J. For. Res. 25, 295–308.

Gustafsson, L., Baker, S.C., Bauhus, J., Beese, W.J., Brodie, A., Kouki, J. et al.
2012 Retention forestry to maintain multifunctional forests: a world
perspective. Bioscience 62, 633–645.

Hanell, B. and Ottosson-Lofvenius, M. 1994 Windthrow after shelter-
wood cutting in Picea abies peatland forests. Scand. J. For. Res. 9,
261–269.

Hartig, G.L. 1808 Anweisung zur Holzzucht für Förster. Akad. Buchhandlung,
pp. 235.

Heiri, C., Wolf, A., Rohrer, L. and Bugmann, H. 2009 Forty years of natural
dynamics in Swiss beech forests: structure, composition and the influence
of former management. Ecol. Appl. 19, 1920–1934.

Helliwell, D.R. 1997 Dauerwald. Forestry 70, 375–379.

Heyder, J.C. 1986 Waldbau im Wandel. JD Sauerländer’s Verlag.
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Mlinšek, D. 1968 Sproščena tehnika gojenja gozdov na osnovi nege (Free style
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Schütz, J.P. 1997 Sylviculture 2: La gestion des forêts irrégulières et
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Von Lüpke, B., Ammer, C., Bruciamacchie, M., Brunner, A., Ceitel, J., Collet, C.
et al. 2004 Silvicultural strategies for conversion. In Norway Spruce
Conversion: Options and Consequences. Spiecker, H., Klima, E., Skovsgaard,
J.P., Sterba, H. and von Teuffel, K. (eds). European Forest Institute
Research Reports 18, pp. 121–164.

Vospernik, S. and Reimoser, S. 2008 Modelling changes in roe deer habitat in
response to forest management. For. Ecol. Manage. 255, 530–545.

Walker, B., Kinzig, A. and Langridge, J. 1999 Plant attribute diversity,
resilience, and ecosystem function: the nature and significance of
dominant and minor species. Ecosystems 2, 95–113.

Wenk, M. and Apel, K.-H. 2007 Die Regenerationsfähigkeit von durch Fraß
des Kiefernspinners (Dendrolimuspini L.) und der Nonne (Lymantria
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eines falschen Zitats und Anmerkungen zu Wilhelm Pfeil. Forstarchiv 61,
182–185.

Yachi, S. and Loreau, M. 1999 Biodiversity and ecosystem productivity in a
fluctuatingenvironment,theinsurancehypothesis.Proc.Natl.Acad.Sci..96,57–64.

Zingg, A. 1999 English and German terminologies in forestry research on
growth and yield: a few examples. For. Snow Landsc. Res. 74, 179–187.

Zingg, A. 2003 Bestandesstrukturen, Durchmesser- und
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zur Jahrestagung 2003, 2–4. June 2003, Torgau. Kenk, G. (ed.). Forstliche
Versuchs- und Forschungsanstalt Baden-Württemberg, pp. 195–204.
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